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to compensate accurately for this spurious com- 
ponent, which was small in any case. A second source 
of error could be due to the assumption of an abrupt 
discontinuous step in the dielectric susceptibilities 
Xo, X220 at z = 0 (Batterman & Cole, 1964). A more 
accurate approximation for the fields near the surface 
would take into account the electron density for an 
actual crystal surface and perhaps even the presence 
of the chemisorbed species and surface roughness as 
well. 

Although the sample was prepared chemically and 
thereafter kept in an inert He atmosphere, the coher- 
ent fraction was observed to degrade as a function 
of time. 

In summary, we have obtained expressions that 
parametrize glancing-angle X-ray standing-wave 
fluorescence yields in the same manner as X-ray 
standing waves created in the Bragg geometry. The 
expressions permit fitting the fluorescent intensity 
from atoms above or below the surface of a crystal 
to obtain the coherent position of the atoms parallel 
to the surface and their coherent fraction. The fluores- 
cence yield includes a dependence on the distance of 
the atoms from the surface because of a changing 
extinction of the wave fields above and below the 
surface. 
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Abstract 

A diffraction ratio is proposed that predicts the 
differences to be expected between the intensities of 
two-isomorphous data sets. This ratio is important 
for the ab initio structure determination of isomor- 
phously related structures by means of direct 
methods. The diffraction ratio is shown to be linearly 
related tO the average doublet phase sum of the 
isomorphous data. It is argued that the doublets are 
essential for correct triplet-phase-sum estimates. The 

0108-7673/93/020350-09506.00 

diffraction ratio and the idealized average triplet- 
phase-sum error, as calculated from a recent prob- 
abilistic theory, turn out to be related. A minimum 
diffraction ratio is required to obtain a triplet-phase- 
sum-error level comparable with that of small struc- 
tures that are solved routinely by conventional direct 
methods. The diffraction ratio can be used to maxi- 
mize the triplet-phase-sum reliability before collect- 
ing the data by choosing the optimal wavelength in 
a single anomalous-scattering experiment, selecting 
the most suitable heavy-atom derivative in a single- 

© 1993 International Union of Crystallography 



C. E. KYRIAKIDIS, R. PESCHAR AND H. SCHENK 351 

isomorphous-replacement experiment or selecting 
the optimal wavelengths in a multiwavelength 
experiment. 

I. Introduction 

The crystal structure determination of large molecules 
such as proteins relies in general on the isomorphous- 
replacement (IR) technique (see, for example, 
Blundell & Johnson, 1976) combined with anom- 
alous-scattering data (see for example, Ramaseshan 
& Abrahams, 1975). More recently, the multi- 
wavelength technique has also become popular 
(Hendrickson, 1988; Karle, 1989). An analysis of the 
above techniques from a probabilistic point of view 
leads readily to the definition of isomorphous data 
sets (Fortier & Nigam 1989). Recently, the full proba- 
bilistic integration of direct methods (DM) with any 
type and number of isomorphous data sets has been 
accomplished (Peschar & Schenk, 1991). In this latter 
study it is shown that various protein-solving tech- 
niques like SAS (single anomalous scattering) 
SIR(N)AS (single isomorphous replacement with or 
without anomalous scattering) and 2DW (two 
different wavelengths) all rely on isomorphous data 
that can be combined in a single probabilistic 
expression. Although tests suggest that DM may be 
applicable in solving protein structures ab initio 
(Furey, Chandrasekhar, Dyda & Sax, 1990), a stan- 
dard DM structure determination has not yet proved 
to be possible. The success of the above-mentioned 
techniques relies on the determination of an initial 
small structural model, i.e. the heavy-atom substruc- 
ture. In this respect it is interesting to note that DM 
are particularly successful in determining relatively 
small structures. An important prerequisite for a suc- 
cessful DM run is to have small estimation errors for 
the most reliably estimated triplet phase sums. There- 
fore, an (experimental) indicator to predict these 
errors will be useful, in particular if the wavelength(s) 
can be selected more or less freely as in a synchrotron 
environment or if a variety of heavy-atom derivatives 
may be prepared. In this way, it would be possible 
to choose beforehand the isomorphous data combina- 
tion with the best chance of success. The knowledge 
of the difference in intensity due to various effects 
between isomorphous data sets plays a prominent 
role in the structure determination of large structures. 
The average change in intensity due to adding a heavy 
atom to a native protein was first established by Crick 
& Magdoff (1956) and has been employed more 
recently by Fortier, Weeks & Hauptman (1984) in the 
form of a so-called diffraction ratio (DR) 

D R =  (2Z Z~/Y. Z ~ )  '/2 (1) 

where 

2 Z 2 =  Z Z~, (2a) 
k ~ H  

Z~,= ~ Z) ,  (2b) 
j ~ P  

with the assumption that the atomic content of the 
derivative equals the atomic content of the native 
protein (P) plus the heavy-atom content (H). 

Equation (1) does predict differences in intensity 
but is valid only for isomorphous-replacement data. 
On the other hand, the so-called Bijvoet ratio Br 
(Zachariasen, 1965), employed if anomalous-scat- 
tering effects are involved, defines the average change 
in intensity but lacks a predictive quality, 

Br = ( I ,  - I _ , ) / ½ ( I ,  + I_ , ) .  (3) 

Equations (1) and (3) are not suitable for our purpose 
since they are not expressed in normalized structure 
factors (n.s.f.s) and they are not generally applicable 
to all possible isomorphous data. Hence, the first 
purpose of this paper will be the development of a 
general intensity-difference indicator, a diffraction 
ratio, for two isomorphous data sets. In this paper, 
only the role of the intensity differences will be 
investigated; the quality of the isomorphism, though 
expected to be important (Srinivasan & 
Parthasarathy, 1976; Hauptman, 1982), will not be 
discussed. It will be shown that the DR is related to 
the average doublet phase sums and also, via the 
doublets, to the average triplet phase sums. Finally, 
some practical rules will be formulated, e.g. the 
optimal wavelength choice in a 2DW experiment, for 
potential DM applications. 

2. A diffraction ratio for two isomorphous data sets 

In DM all phase-sum estimations are calculated via 
the knowledge of (isomorphous) n.s.f.s. The latter 
can be defined in a general way by allowing the atomic 
scattering factor fj to be complex valued, hence 
including possible anomalous scattering. 

fj = f~. + f j  + ifj' 

=f~ +/fj '  

= If2[ exp (i6j). (4) 

To handle data from IR and anomalous-scattering 
experiments in the same way, the concept of isomor- 
phous structure factors is used (Fortier & Nigam, 
1989; Peschar & Schenk, 1991). Accordingly, two 
(normalized) structure factors EH1 and EH2 are con- 
sidered to be isomorphously related provided their 
structure-factor expression is identical except for the 
atomic scattering factors. 

E.~  = IE.,,I exp (i~OHp) 

=(z,,,)  .fj, (5) 
j = l  
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with 

where 

z~ = Iz~l exp (iAvq) 
N 

= Z ~.l~qlexp[-i(~sp+S.q~sq)]. 
j = l  

-11 if Hp = Hq 
sm= if Hp = - H q  

[Hv and Hq are the reciprocal-lattice vectors for the 
data sets p (= 1, 2) and q (= 1, 2), respectively]; 

"r H 

6 n = m H  E exp[2zr i (R*H-rj+H.T~)] ,  

where R~ is the rotational matrix of symmetry oper- 
ations, T~ is the translational vector of symmetry 
operations, ran->1 (multiplicity) and 7 n is the 
number of symmetry operations for which the 
trigonometric part is different; 

n = N / m  (9) 

m = rHmn (10) 

where N is the number of atoms in the unit cell and 
m is the total number of symmetry operations. 

In space group P1 the normalized structure-factor 
expression becomes 

N 

EHk = 1; gSk exp (2¢riH.rs) for k = 1, 2 (11) 
j = l  

with gSk = (Zkk)-*/2fSk, the normalized atomic scatter- 
ing factors. 

Ilx this way, the usual isomorphous-replacement 
data are handled and it can also simply be shown 
that EH and E *  are isomorphously related. The fol- 
lowing relations between isomorphous n.s.f.s EH ~ and 
EH2 are useful: 

N 

EH~-EI42 = 1; (gj~-gj2) exp(2~iH.rj);  (12a) 
j = l  

N 

EHa+EH2 = 1; (gja+g~E)exp(2zriH.rj). (12b) 
j = l  

In analogy with the Bijvoet ratio (3), the following 
diffraction ratio is introduced using (12): 

DR( idea l )=  4 ((EH~+ E.2)(EH~+ E-~2)~J 

(13) 

In a more explicit notation (13) becomes 

DR(ideal) 

[4  (IEHll2 +IEH21Z-- 21EHIIIEH21 COS q,~2____))],/2 
\ (IEn~l 2+IEH212 + 21EH,I IEH2[ COS ~ 2 ) ]  . 

(14) 

which shows that the DR is related to the doublet 
phase sum 

qj~2 = ¢Pn ~ + S12¢PH2 (15) 

(6) with q~u~ and ~H2 the phases of two isomorphously 
related n.s.f.s EH 1 and EH2 , respectively Is,2 is given 
by (7)]. 

An alternative expression to (14) is arrived at when 
(7) the dependence on the atomic coordinates is intro- 

duced in (13), with use of (11), 

D R ( i d e a l ) =  4 Igj,-gj212+ZY~ I; (gjl-gj2) 
j I j < i j < i  

(8) ) 
x ( g * -  g*2) cos [2¢rH.(rj- ri)]} 

J 

I N N N 

x E Ig j ,+gj : la+2E 1; (gj,+gja) 
j = ,  j < i  j < i  

X (g/*l + g/*2 ) COS [2-rrH.(rj- r/)]} - l )  
1/2 

(16) 

The theoretical expressions (13), (14) and (16) are 
labelled ideal since neither the doublets nor the inter- 
atomic vectors are completely known without prior 
knowledge of the atomic coordinates. Equation (14), 
calculated from the atomic coordinates, will be used 
as a reference. An approximation to the theoretical 
DR expression is readily obtained by neglect of the 
double summations in (16), 

DR2 = 4 E I g j , -  gj2[ 2 [gj, + g~2l 2 • 
j = l  

(17) 

Obviously, (17) can predict intensity differences 
before collecting the data. From the work of Peschar 
& Schenk (1991) it follows that the Friedel-related 
data sets {H} and {-H} should be considered to be 
separate data sets that are isomorphously related. In 
the following we will distinguish four cases of two 
isomorphously related data sets: 

(i) Single isomorphous replacement including 
anomalous-scattering effects (SIRAS).  This is the most 
general case. The isomorphous data sets are: {H(S1)} 
and {H(S2)}, with S~ the heavy-atom(s) derivative 
and $2 the native protein, in which the atomic scatter- 
ing factors are complex valued. It should be noted 
that this definition of SIRAS may differ from those 
given in the literature (see, for example, Blundell & 
Johnson, 1976). However, from our definition of 
isomorphism it follows that the usual definition of 
SIRAS (a complete sphere of data for two 
anomalously scattering isomorphously related struc- 
tures S~ and S=) leads to four isomorphously related 
data sets. 
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The complex normalized scattering factors 

gjl = g;, + ig~'t, 

&2= g;2+ igj'2, 

when substituted in (17) lead to 

gj2) + ( g j , -  gj"2) 2] DR2=  4 E [ ( g ; , -  r 2 , 
j=l  

x [(g~+gj2)  + ( g j l + g ) )  2] (18) 
j=l  

(ii) Single isomorphous replacement neglecting 
anomalous-scattering effects ( SIRNAS).  The isomor- 
phous data sets are {It(&)} and {H(S2)}, with $1 the 
heavy-atom(s) derivative and $2 the native protein 
for which the atomic scattering factors are real valued. 
In this case, 

o 
gj l  = g j l  

o 
gj2 : g j2, 

so (17) reduces to 

It__ ~ / N  ]I/2 D R 2 =  (g;, - gj'2) 2 ~ (g;, + g;2) 2 . (19) 1 j= 
(iii) Single-wavelength anomalous scattering ( SAS). 

In this case, the isomorphous data sets are {H(S1)} 
and {-H(SI)},  so 

gj2 = g*,. 

Hence, (17) reduces to 

I t  --~ / ~ l  "ll/2 o + _t \21 D R 2 =  (gS'l) 2 (gi, gy,) J • (20) 1 j= 
(iv) Two different wavelengths (2DW). The isomor- 

phous data sets are: {H(A~)} and {H(A2)}. The same 
structure is measured for two different wavelengths 
(A~ and A2) using half of the Ewald sphere (only H 
or - H ) .  In this case, 

but 

hence, (17) becomes 

&l # &2 

gjol= o g j2, 

({N } D R 2 =  4 Y. [(g;,-g;2)2+(g;,-gj'2)21 
j=l  

I -1 \1/2  

X J='~ [(g;,+g;2)2+(g;l+gj'2)2]! ) . (21) 

In (18)-(21), the normalized scattering factors gjl 
and gj2 may be replaced by the usual scattering factors 
fj~ and fj2, respectively, since the normalization con- 
stants zll and z22 are present in both numerator and 
denominator and can be omitted without significantly 
changing the results (as is obvious from § 3.1 and 
Tables 1-4). A second simplification, replacing the 

0-dependent fj '  by Zj, turns out to be useful. With 
this taken into account, (17) becomes 

DR3 

= 4 ~ [(Zjl+fj~+ifj"l)-(Zj2+fj2+ifj'2)] 2 
j=l  

x Y~ [(Zj ,+Jj ,+/f~, )+(Zj2+fj2+/f j '2)]  z , 
j=!  

(22) 

where Zjl and Zj2 are the atomic numbers of the j th 
atom from the first and the second data sets, respec- 
tively. 

3. Test results and discussion 

The formulae (18)-(22) have been tested extensively 
using a variety of randomly generated structures as 
well as real protein data from the Protein Data Bank 
(PDB) at Brookhaven National Laboratory (Bern- 
stein et al., 1977; Abola, Bernstein, Bryant, Koetzle 
& Weng, 1987). The predictive quality of (18)-(22) 
will be established first by comparing the data with 
the ideal diffraction ratio (14) (see § 3.1). The relation 
between the diffraction ratio and the doublet phase 
sum will be discussed in § 3.2. It will be shown in 
§ 3.3 that the diffraction ratio is also related to the 
average error of the triplet phase sum. 

3.1. Evaluation of the diffraction ratio 

In Tables 1-4 some representative diffraction ratio 
results are listed for the four isomorphous data cases 
SIRAS, SIRNAS, SAS and 2DW for a variety of 
structures. The generated structures PE-C62NI5022 , 
Pt-CI24N31044 , Pt-C186N47066, Pt-C248N63088, Pt- 
C496N1270176 and Pt-C744NI910264 belong to space 
group P1 whereas the proteins APP and Csso crystal- 
lize in C2 and P2~2~21, respectively. The first six listed 
structures were constructed in such a way that the 
ratio of C, O and N atoms is comparable with that 
in known proteins. The resolution and the unit-cell 
parameters were chosen on similar grounds. APP, 
avian pancreatic polypeptide (Blundell, Pitts, Tickle, 
Wood & Wu, 1981), is a small protein crystallizing 
with Zn 2+ in space group C2 with one molecule of 
36 amino acid residues (302 atoms) in the asymmetric 
unit and unit-cell parameters a=34.18,  b=32.92,  
c = 28.44/~, fl = 105.30 ° and Z = 4. The structure was 
solved originally by SIRAS. In the test procedure, 
data up to 2.0/~ resolution and Cu Kc~ radiation were 
used. In the PDB release of July 1991, this structure 
is referenced as 1PPT. 

Csso, cytochrome c from Paracoccus denitrificans 
(Timkovich & Dickerson, 1976), is a protein with 
molecular weight Mr = 14500 (1017 atoms in the 
asymmetric unit), space group P21212~ and unit-cell 
parameters a--42.70, b=82.17,  c=31.56/~ and 
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Table 1. Comparison of  the ideal diffraction ratio 
DR(ideal)  (14) with the theoretical approximations 

DR2 (18) and DR3 (22). 

SIR.AS case; data sets: {H(S0} and {a(s2)} ;  strongest 250 [EH[ 
values used. Randomly generated structures: space group P1, Cr 
Ka radiation, resolution 2.3 A. 
APP: space group C2, resolution 2.0 A, radiation Cu Ka. 
C550: space group P2~2~2~, resolution 2.5/~,, radiation Cu Ka. 

DR 
S1 S2 (ideal) DR2 DR3 

Pt-C62N 15022 F-C62NI5022 0.80 0.82 0.84 
Pt-C t24N3 iO44 F-C124N3tO44 0.64 0.67 0.64 
Pt-C 186N47066 F-CIarN47066 0.55 0.58 0.53 
Pt-C248N63088 F-Cz48N63088 0.49 0.52 0.47 
Pt-C496NI270176 F-C496NI27OI76 0.37 0.38 0.34 
Pt-C744N 191 O264 F-C744NI9tO264 0.29 0.32 0.28 
APP (derivative) APP (native) 0.54 0.60 0.53 
C55o (derivative) C550 (native) 0.32 0.34 0.31 

Table 2. Comparison of  the ideal diffraction ratio 
DR(ideal)  (14) with the theoretical approximations 

DR2 (19) and DR3 (22) 

SIRNAS case; data sets: {H(S1)} and {H(S2)}; strongest 250 [EH] 
values used. Randomly generated structures: space group P1, 
Cr Ka radiation, resolution 2.3/~. 
APP: space group C2, resolution 2.0/~, radiation Cu Ka. 
(?550: space group P21212~, resolution 2.5 ~, radiation Cu Ka. 

DR 
Sl  $2 (ideal) DR2 DR3 

Pt-C62NI5022 F-C62NIsO22 0.82 0.85 0.87 
Pt-CI24N3 tO44 F-CI24N31044 0.67 0.70 0.67 
Pt-C186N47066 F-C 186N47066 0.58 0.61 0.56 
Pt-C248N63088 F-C248N63088 0.51 0.54 0.49 
Pt-C496N127O176 F-C496N 1270176 0.39 0.41 0.36 
Pt-C744NIglO264 F-C744N t910264 0.31 0.34 0.29 
APP (derivative) APP (native) 0.57 0.62 0.56 
C55 o (derivative) C55o (native) 0.33 0.37 0.34 

Table 3. Comparison of  the ideal diffraction ratio 
DR(ideal)  (14) with the theoretical approximations 

DR2 (20) and DR3 (22) 

SAS case; data sets: {H(S0} and {-H(S0}; strongest 250 IE, I 
values used. Randomly generated structures: space group P1, Cr 
Ka radiation, resolution 2.3/~,. 
APP: space group C2, resolution 2.0/~, radiation Cu Ka. 
Csso: space group P212t2t, resolution 2.5 A, radiation Cu Ka. 

DR 
Sl (ideal) DR2 DR3 

Pt-C62 N15022 0.29 0.31 0.26 
Pt-C124N31044 0.25 0.26 0.21 
Pt-Ct~6N,~7066 0.22 0,23 0,19 
Pt-C248N63088 0.20 0.21 0.17 
Pt-C496NI27OI76 0.11 0.16 0.13 
Pt-C744NIglO264 0.09 0.13 0.10 
APP (derivative) 0.10 0.14 0.11 
C55o (derivative) 0.08 0.09 0.08 

Z = 4. In addition to the anomalous scatterers Pt and 
C1 (PtC12-), the structure contains one Fe and six S 
atoms that also scatter anomalously at the wavelength 
used (Cu Ka) .  The structure was solved originally by 
SIRNAS to a resolution of 2.45 A. In the test pro- 
cedure, data up to 2.5/~ resolution and Cu Ka radi- 

Table 4. Comparison of  the ideal diffraction ratio 
DR(ideal) (14) with the theoretical approximations 

DR2 (21) and DR3 (22) 

2DW case; data sets: {H(A1} and {H(Az)}, strongest 250 IEHI values 
used. 
Cf-C62NI5022: space group P1, resolution 2.3 A. 

DR 
hi A2 (ideal) DR2 DR3 

Cr Ka Fe Ka 0.06 0.07 0.06 
Cr Ka Co Ka 0.08 0.10 0.09 
Cr Ka Cu Ka 0.14 0.15 0.13 
Cr Ka Mo Ka 0.23 0.26 0.22 
Cr Ka Ag Ka 0.20 0.23 0.19 
Fe Ka Co Kct 0.03 0.03 0.03 
Fe Kct Cu Ka 0.07 0.08 0.07 
Fe Ka Mo Ka 0.17 0.19 0.16 
Fe Ka Ag Ka 0.14 0.16 0.13 
Co Kct Cu Ka 0.04 0.05 0.04 
Co Ka Mo Ka 0.15 0.17 0.14 
Co Kct Ag Ka 0.12 0.14 0.11 
Cu Ka Mo Ka 0.11 0.12 0.10 
Cu Kct Ag Ka 0.08 0.09 0.08 
Mo Ka Ag Kct 0.03 0.03 0.03 

ation were used. In the PDB release of July 1991, this 
structure is referenced as 155C. 

In all cases, n.s.f.s were calculated from the atomic 
coordinates. Table 1 shows test results for the SIRAS 
case using as isomorphous data sets {H(S1)} and 
{H(S2)} with S~ and $2 the structures of the first and 
second data sets, respectively. In Table 2, the results 
are listed for the SIRNAS case. Table 3 gives results 
for the SAS case using as isomorphous data sets 
{H(SI)} and {-H(S1)}. For this case, only $1 for the 
Friedel pair is used (first column of Table 1). Finally, 
Table 4 illustrates 2DW test results for the 
hypothetical structure Cf-C62N15022. The isomor- 
phous data sets are defined as {H(AI)} and {H(A2)} 
where A1 and A2 are two different wavelengths. The 
last three columns of Tables 1-4 give the diffraction- 
ratio values from (14), (18)-(21) and (22), respec- 
tively. The tables show that the ideal diffraction ratio 
(14) [DR(ideal)]  and the theoretical approximation 
(17) (DR2) are highly correlated. Nevertheless, in 
almost all instances, DR2 is slightly larger than 
DR(ideal). This can be explained as follows. The 
omission of the double summation makes the 
denominator  too large and the numerator too small. 
Replacing fj '  by Z~ corrects this (at least partly). We 
always have f~' < Zj, so we may write 

Zj = f~' + 6j with 6j > 0. (23) 

By substitution of (23) in (22), DR3 can be written as 

D R 3 = [ 4  Y. I(f;,+J~l+iJj'l)-(fj°2+J~2+ifj'2) 
j = l  

+ (t$~,- t$i2)[ 2 [ (f~'jl +f~, +/fS", ) 
1 

1/2 

+ (fj°2 + f~2 + iJj'2) + ( rj, + rj2)l 2 (24) 
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Since ~, - 6j2 < 6~ + 6j~," DR3 is expected to be smal- 
ler than DR2. The diffraction ratio DR3 turns out to 
approximate DR(ideal) better than DR2 although 
DR3 tends to be slightly smaller than DR(ideal). In 
most practical cases to be discussed in connection 
with a possible DM application ( D R <  0.3), DR3 is a 
good approximation to DR(ideal),  so only DR3 will 
be used from now on. 

3.2. The relation between the diffraction ratio and the 
average value of  the doublet phase sum 

The close relation between the diffraction ratio and 
the doublet phase sum (15), apparent from (14), has 
led to extensive tests to establish the functional form 
between the diffraction ratio (22) and the average 
doublet phase sum. For the sake of brevity, the results 
for the SIRAS case are not included since they are 
almost the same as those for the SIRNAS case. 

Fig. 1 shows the relation between the diffraction 
ratio (22) and the mean absolute value of the doublet 
phase sum (15) in the SIRNAS case for a variety of 
randomly generated structures in space group P1 of 
various sizes ( N  = 200, 300, 400, 500, 600, 700, 800 
and 1200) and their heavy-atom derivatives (H  = Si, 
Ca, Ni, As, Rb, Rh, Ba, Er, Pt, At, Cf). In addition, 
the data for the proteins APP and C55o have been 
included as well. A linear relation between (22) and 
the mean absolute doublet value is apparently present 
(see Fig. 1). The smallest mean absolute doublet value 
is l mc ( 1 0 0 0 m c = 2 c r r a d )  at DR=0 .02  while the 
largest value, 56 mc, is found at DR = 0.82. 

The relation between the DR and the mean value 
of the doublet phase sum in the SAS case is visualized 
in Fig. 2 for a set of randomly generated structures 
in space group P1 of various sizes ( N = 2 0 0 ,  300, 
400, 500, 600, 700, 800 and 1200) and their single 
heavy-atom derivatives (H  = Ni, As, Rb, Rh, Ba, Er, 

40 

o 
c 
~, 20 

o 

x o 

(!1 

°~+ Xz. 

~ '  

t O  ^ 

.A ~, 

4" 

;¢ 

CJ 
f ' )  ~ .  

0.00 0.25 0.50 0.75 
DR3 (22) 

Fig. 1. The relation between DR3 (22) and the mean doublet value 
(in me) in the SIRNAS case. Symbols used: E) H-200; A H-300; 
+ H-400; x H-500; 0 H-600; ~ H-700; ~ H-800; Z H-1200; 
Y PDB. H = S i ,  Ca, Ni, As, Rb, Rh, Ba, Er, Pt, At, C f  and 
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Ta, Pt, Hg, At, Rn, U, Bk, Cf). The DR and the 
average doublet phase sum again show a linear 
relationship. The minimum mean doublet value is 
1 mc at D R =  0.015; the maximum is 54mc at D R =  
0.45. This conclusion also holds for multiple heavy- 
atom derivatives as can be seen from the structures 
Hg3Ta- ,  Hg4-,  H g 3 R n - ,  H g 3 U -  a n d  Hg3Bk-800  ( s y m -  
bo l  Y) in Fig. 2. 

Finally, in Fig. 3, the DR-doublet-phase-sum rela- 
tion is shown in the 2DW* case for three small heavy- 
atom structures in combination with 15 possible com- 
binations of two wavelengths from the set (Cr Ka, 
Fe Ka, Co Ka, Cu Kc~, Mo Kcr, Ag Ka) .  It appears 
that this relation is also linear. The minimum doublet 
value is 2 mc at DR = 0.04, the maximum 44 mc at 
DR = 0.22. 

* For the case of 2DW, only small structures have been used 
since, for larger structures, the doublets became too small to be 
useful. 
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In conclusion, the DR-doublet-phase-sum relation 
is more or less linear, in particular for DR smaller 
than 0.20, though the linear relationship is different 
for the various data combinations (SIRNAS, 2DW 
and SAS). 

However, below D R =  0.10, the average error of the 
triplets rises sharply to values above 100 me, even for 
the most reliable triplets. 

The same conclusions also hold in the SAS case, 
as can be judged from Fig. 5, but at a fixed DR level 

3.3. The relation between the diffraction ratio and the 
average error o f  the estimation of  triplet phase sums 

The main purpose of this paper is to investigate 
the role of the diffraction ratio in potential DM appli- 
cations. In practice, an average error of 30 ° for the 
most reliable triplet phase sums is usually sufficient 
to solve structures without difficulty via conventional 
direct methods. It can be shown in various ways that, 
for a correct estimation of a phase-sum invariant of 
order N-" ,  invariants of lower order, N -(n-1/2), a r e  

essential (Peschar, 1987). For example, for a correct 
estimation of the quartet phase sum (order N- l ) ,  the 
triplets (of order N -~/2) that add up to the quartet 
are required. Therefore, it is expected that the doub- 
lets, which are of the order O(N°) ,  play a similar 
role with respect to the estimation of triplets amongst 
phases of isomorphous data sets. 

In a first assessment of this hypothesis, ideal doub- 
let values have been calculated from the atomic coor- 
dinates and used as estimates in a recently secured 
probabilistic expression for the estimation of triplet 
phase sums amongst isomorphous data [equation (84) 
in Peschar & Schcnk, 1991]. In this way, it has been 
determined to what extent and how the DR and the 
(idealized) triplet-phase-sum estimation errors are 
correlated. 

The calculations have been performed for the same 
structures as in Figs. 1-3 for the cases SIR(N)AS, 
SAS and 2DW. For brevity, the results for the SIRAS 
case have been omitted from the figures since they 
are almost the same as those in the SIRNAS case. 

In Fig. 4(a) ,  the relation between the DR given by 
(22) and the overall estimated triplet-phase-sum error 
is shown for the same structures as in Fig. 1. In the 
DR range of 0.0-0.07, the average error of the esti- 
mated triplets decreases only slowly from the random 
250 mc ( D R =  0.0) to 229 me, e.g. for Si-n with n--  
200-1200 atoms and Ca-n with n = 700-1200 atoms. 
An enormous reduction of the estimation error (from 
218 to 129 me) takes place if the DR increases from 
0.07 to 0.10, e.g. for Ca-n with n =300-600 atoms, 
Ni-800, Ni-1200 and As-1200. Finally, from DR = 0.1 
to 0.82, the average error reduces steadily to 52 mc 
(the rest of the test structures). In practical DM, only 
the most reliable triplets are used in the initial stages 
of phase determination. Figs. 4(b) and (c) show the 
results corresponding to Fig. 4(a) for the 50 and 20% 
most reliable triplets only. It is apparent from Fig. 4 
that once again a DR of approximately 0.1 is a critical 
point. Above this limit, the average error decreases 
rapidly to an encouragingly low value of 60 me. 
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the average errors show a larger variation than in the 
SAS case. This variation results mainly from differen- 
ces in structural size. An interesting anomaly in the 
predictions exists for the structures Ba-n and Er-n 
with n = 200-600. For Ba-600 with a DR of 0.09, the 
overall triplet error is 108 mc while for Er-600 with 
a larger DR (0.11), the error is 120 me. The statistics 
for the 50 and 20% most reliable triplets show similar 
trends to those for the SIRNAS case. 

Finally, in Fig. 6, triplet statistics are presented for 
the structures for which the DR-doublet  relations 
were given in Fig. 3. For most structure-double- 
wavelength combinations, the average triplet errors 
are larger than 200 me, corresponding to a DR smaller 
than 0.07. However, for each of the three structures, 
at least one wavelength combination can be found 
such that the average triplet error reduces enor- 
mously. This figure illustrates the importance of 
selecting the most profitable wavelength combination. 

The test results have led to the formulation of two 
rules. 

Rule 1. The larger the DR the better the estimation 
of the triplets for a specified pair of isomorphous 
structures. 
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Fig. 5. The relation between DR3 (22) and the average triplet error 
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error (in me) in the 2DW case. Symbols used: as in Fig. 3. 

In summary, a DR of 0.1 seems to be a lower limit 
for a DM application, at least as judged from the 
ideally calculated doublet phase values together with 
the probabilistic expression of Peschar & Schenk 
(1991). Structures with a DR < 0.1 have average errors 
that are too large and that may, therefore, be regarded 
as unsuitable for a standard DM application. 
Nevertheless, only estimates for the doublets will be 
available in practice instead of true values, which, 
statistically, will influence the estimates in a negative 
way. Hence, it can tentatively be concluded that a 
succesful routine DM run for two isomorphous data 
sets is not likely to occur if the DR is smaller than 
0.1. If the DR increases from 0.1 onwards, the estima- 
tion of the triplets gets better. It should be noted that 
a too large DR in the case of SIR(N)AS would lead 
to nonisomorphism. However, as was mentioned in 
the Introduction, the quality of isomorphism is not a 
subject of this paper. For structures with a D R >  0.1, 
the most reliable triplets have a theoretical error level 
that is acceptable for DM. Whether the practical error 
level is also small enough remains to be seen. 

An analysis of the 2DW experiments has led to the 
definition of a second rule 

Rule 2. The larger the differences of the f '  and f"  
values for a pair of wavelengths, the better will be 
the estimation of the triplets. If these differences for 
pairs of wavelengths are the same, the best estimation 
is achieved by that wavelength pair for which the sum 
of the f '  and the f '  values is the smallest. 

For example, according to this rule, the optimal 
pair of wavelengths for the artificial structure Cf- 
C62N15022 is Cr Kot-Mo Ka. This second rule incor- 
porates and extends a rule for the optimal wavelength 
choice as formulated by Mitchel (1957) and Caticha- 
Ellis (1962). According to these authors, the optimal 
wavelength depends only on the difference of the f 
values. In Fig. 7, the average errors from Fig. 6 are 
shown plotted versus the absolute difference of the 
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values. Obviously, the correlation present in Fig. 6 is 
absent in Fig. 7. 

In addition to the DR already discussed, several 
alternative DR expressions have been investigated. 
Amongst these (see, for example, Srinivasan & 
Parthasarathy, 1976; Hendrickson & Teeter, 1981) a 
ratio introduced recently by Ralph & Woolfson 
(1991) is 

R =  Y~ [(fo+f[)2+(f[,)2_(fo)2] [f~]. (25) 
i = 1  j =  

(The summation over i is for anomalous scatterers 
only and that over j is for all atoms.) This ratio may 
be modified slightly to be comparable with DR3, 

= + f , )  + ( f , )  - ( Z , )  . R '  2 Y~ [ ( Z ,  , 2 . 2 2 
. =  i = 1  1 

(26) 

Equation (26) has been tested for the same structures 
as in Fig. 5. The results, presented in Fig. 8, show a 
reduced DR-triplet-error correlation compared with 
Fig. 5. 

In conclusion, the DR as defined in this paper can 
be used to predict whether a structure solution v i a  a 

pair of isomorphously related data by means of direct 
methods may, in principle, be successfully attempted. 
In this paper only ideal (calculated) doublets have 
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Fig. 8. The relation between R (26) and the average triplet error 
(in me) in the SAS case. Symbols used: as in Fig. 2. 

been used. As a logical next step, to be discussed in 
the next paper, estimated doublets will be used 
instead of ideal ones (Kyriakidis, Peschar & Schenk, 
1993). 
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